
November/December 2003 11

Doing More with Fewer Wires in the Harness:
A New Approach to Spacecraft On-Board Command

and Telemetry Interfacing
by

Bdale Garbee, KB0G, Chuck Green, N0ADI,
Lyle Johnson, KK7P, and Stephen Moraco, KC0FTQ

Introduction
The new approach to handling on-board
command and telemetry described here re-
places much of a traditional spacecraft wir-
ing harness with a CAN bus connecting
standard module interface boards. Using
this approach reduces mass and integra-
tion complexity, provides flexibility, and
simplifies and facilitates testing of indi-
vidual spacecraft modules and groups of
modules before full satellite integration.

A new, lightweight protocol designed to
take advantage of unique features of the
CAN bus architecture delivers a simple,
robust, and powerful solution for multiplex-
ing large numbers of control signals and
telemetry channels on a single twisted-pair
in the wiring harness. A flexible module in-
terface board and associated spacecraft bus
interface connector become standard com-
ponents, simplifying module design and al-
lowing payload experimenters to concen-
trate on their payloads, not spacecraft in-
terfaces.

The hardware and software detailed in this
paper are scheduled to fly on the AMSAT-
NA Eagle spacecraft intended for high-al-
titude elliptical Earth orbit. While the ini-
tial focus is on meeting all of Eagle’s re-
quirements, components and protocols de-
signed for this system have wide applica-
bility to other spacecraft of similar complex-
ity.

Prototypes of the module interface boards
have passed radiation and other relevant
tests. Final module circuit board designs
and flight software are nearing completion.

Background
Traditionally, most satellites used a point-
to-point wiring harness to connect all of the
onboard electrical and electronic compo-
nents. As spacecraft become larger and ad-
vances in technology allow more features to
be packed into each module, the complexity
of this wiring harness increases. As the com-
plexity increases so does the mass and the
administrative burden of keeping track of
which wires go where in the wiring harness
design.

One of the successful innovations in the
original AMSAT Microsat design was the
use of a multi-drop serial bus for command
and telemetry. The Microsat bus was based
on an obsolete Motorola part called the
AART, which provided a modest number of
modules in close proximity with a modest
number of control and telemetry points. More
recent micro-satellites have employed other
serial bus technologies like SPI with similar
success.

Early in the Phase 3D program that resulted
in AO-40, CAN bus was proposed as an al-
ternative to the traditional wiring harness.
The CAN (Controller Area Network) bus was
originally designed primarily for use in auto-
motive electronics. While it has grown in
popularity and is fairly widely used within
the embedded systems community today, in
the early days of the Phase 3D program it
was brand new with no real track record. To
manage risks, the decision was taken to build
AO-40 with a traditional wiring harness,
which turned out to be the most complex
such harness ever built for an AMSAT space-
craft! However, a CAN bus was flown as an
experimental interconnect, and serves as the
primary communications path between
RUDAK and all of the scientific experiments.
This CAN experiment on AO-40 was highly
successful, and CAN bus technology has
also now flown on a number of other small
satellites including several built by SSTL.

The Idea
For the AMSAT-NA Eagle project the size
and complexity of the spacecraft suggested
to us that it might be a good time to revisit
the idea of replacing at least part of the wir-
ing harness with a modern, robust multi-drop
serial bus design. After considering various
alternatives, CAN bus was selected as the
base technology.

Drawing from the design of the AART
boards in the Microsats and the CAN
SmartNode boards on AO-40, we have de-
signed and are building a number of identi-
cal small circuit boards, one of which will be
placed in each module to provide a standard
interface between the spacecraft bus and the
module’s electronics. These circuit boards

contain an Atmel microcontroller with CAN
interface, power switch, temperature and
current sensors, connectors for the space-
craft and module interfaces and signal con-
ditioning circuitry for all of the inputs and
outputs.

The Eagle team intends to use a new house-
keeping computer design called IHU-3. This
IHU is derived from the designs flown on
previous Phase 3 spacecraft including AO-
10, AO-13 and AO-40 and is intended to re-
use much of the software developed for
those missions. Thus, one of the design con-
straints for this project was to provide a con-
ceptual equivalent to the I/O multiplexer that
was associated with previous AMSAT IHU
designs. In effect, what we have done is to
design a system for distributing the I/O mul-
tiplexing among the various modules instead
of centralizing it in the IHU. Fortunately, this
turns out to be an excellent match to what
CAN bus does best.

We also realized during the Phase 3D project
that having each module use a different set
of connectors and pinouts for attaching to
the wiring harness made bench testing of
modules difficult. Special test boxes and wir-
ing harnesses had to be developed for each
module or set of modules, and these were
hard to keep up with in the AMSAT lab en-
vironment. A major benefit of this project is
that key interfaces between each module and
the spacecraft harness are identical for ev-
ery module, and a single test harness can be
used to test many individual modules or
groups of modules.

As we surveyed the needs of the satellite
module builders it quickly became apparent
that there were at least three classes of con-
sumers for the CAN module. Three main op-
erating modes are implemented that are eas-
ily selectable by the module builder. We re-
fer to these as normal, multiplexed and byte-
pipe modes.

Electrical Design
There are two components to the hardware
in this system. The first is inclusion of a CAN
interface on the IHU(s) on the spacecraft,
which is left to the IHU-3 team to document.



12 The AMSAT Journal

Circuit Board Showing Sub-D Connector

The second is implementation of the small
circuit boards that will be included in each
payload module and we describe here.

The core component on the widget board is
an Atmel T89C51CC01 microcontroller. This
part is a derivative of the venerable Intel 8051
architecture including a number of digital
input and output lines, an integrated analog
to digital converter, a CAN interface, onboard
Flash program memory and data RAM.

Jumper locations on the board allow for six
bits of address selection allowing up to 64
modules and two bits of mode selection.
Currently we implement three of the four
possible modes - normal mode, a multi-
plexed mode supporting expansion of the
digital control and telemetry line count and
a byte pipe mode for communication with a
processor in the module’s electronics.

In normal mode the features provided by the
widget board include a power switch, cur-
rent sensor, temperature sensor, 12 digital
output lines, 8 digital input lines and 5 user-
defined analog sensor channels.

In multiplexed mode the digital output and
input lines from normal mode are replaced
by support for up to 8 banks of external mul-
tiplexers. The output lines are allocated as 8
for the mux data bus, 3 for mux select and
one for a strobe. The input lines are con-
verted to a mux data bus using the same se-
lect and strobe lines as the outputs. Thus, in
this mode the widget board provides a power
switch, current sensor, temperature sensor,
up to 63 lines of digital output, 64 lines of
digital input and 5 user-defined analog sen-
sor channels.

In byte-pipe mode the widget implements
distinct 8-bit input and output busses with
simple handshaking. The feature set in this
mode includes the power switch, current
sensor, temperature sensor, 8-bit input and
output busses each with strobe/ack hand-
shake lines, two independent output lines
and three user-defined analog sensor chan-
nels.

Various ideas have been discussed for other
modes we might support including various
flavors of serial byte pipes. There are also
proposals for reusing this hardware with
fully custom firmware for some special sen-
sor applications. No commitments have yet
been made by the team to support any of
these other applications.

Circuit Description
Please refer to the schematics on pages 16
and 17 for this discussion.

A 15-pin male D-sub connector (P1) inter-
faces to the spacecraft and brings in nomi-

nal 14V power, provides CAN connections
and passes through up to five user-defin-
able signal lines which connect directly to
the associated module. Redundant CAN
connections are provided so the spacecraft
wiring harness can loop through the mod-
ule without splicing wires. An EB line is pro-
vided passed through to the user module,
which allows tapping the IHU engineering
beacon data stream if required by the mod-
ule.

A 40-pin connector (J5) organized as 2 rows
of 20 pins all on 2.00 mm centers attaches to
the module and brings all available signals
to the module.

Incoming power is fused, filtered and applied
to a power switch (FET Q2 and associated
electronics) and to a switching regulator (U7)
which provides the required +5V to run the
CAN module.

Analog circuitry includes a temperature sen-
sor (U12) and a means to monitor the current
consumption of the attached module (U8).
Remaining analog circuitry conditions the
ADC inputs with filtering and clamping.
Analog signals are then applied to the eight
ADC inputs of the microcontroller (U5).

CAN signals are filtered by U3 and applied
to U4, which converts from the CAN physi-
cal layer-signaling scheme to standard
CMOS 5V logic levels. U4 has its own power
supply filtering to minimize noise effects from
the CAN bus. The CMOS signals are inter-
faced directly to U5.

U5 includes clock circuitry and is set to 8
MHz by crystal Y1. U6 provides a regulated
analog voltage reference independent of the
accuracy of the 5V supply.

Shift register U2 allows the microcontroller
to read the jumpers at reset or on command.
The jumpers set the widget address as well
as its operating mode.

Schottky diodes and current limiting resis-
tors isolate the U5 digital outputs. The user
module must provide pull-ups to not more
than +5V and the pull-up value should be at
least 10K ohms.

Radiation Testing Results
We were pleasantly surprised by how well
the Atmel microcontroller survived our ra-
diation testing. By arrangement with the
University of Virginia Medical Center, pro-
totype CAN widgets were exposed to a cali-
brated radioactive source in controlled dos-
ages. The module was then evaluated for
power consumption and functionality. These
tests were repeated until failure, which oc-
curred at some 60 kRads.

In addition to the confidence this testing
provided, we were able to directly apply some
of its results to the circuit design. For ex-
ample, the use of the clock oscillator on the
microcontroller, which saves tens of milli-
watts of continuous power consumption,
was only decided upon after evaluation of
the radiation results. This may result in a
power savings of a watt or so in a moder-
ately complex spacecraft like Eagle.

To further enhance reliability in the radia-
tion intense GTO orbit environment AMSAT
will continue our traditional practice of ap-
plying additional shielding material to criti-
cal ICs. This shielding will likely be imple-
mented with 1mm of Lead affixed to the rel-
evant components.

Mechanical Design
As usual, the process of laying out the PCB
was more an exercise in mechanical engineer-
ing than electrical engineering. The mechani-
cal objectives were simple to state but a bit
more difficult to implement. Keep it as small
as possible while maintaining a form factor
that would fit into any size box available to
the module developers. And provision for
mounting the board must be adequate to



November/December 2003 13

withstand vibration levels anticipated dur-
ing launch.

Throughout this section we freely mix met-
ric and imperial units. When working with

electronic components any attempt to stan-
dardize is futile. And trying to standardize
on a single set of dimensional units will only
lead to errors.

The minimum box thickness is one inch so a
board height of 24mm was chosen. The width
would be whatever was necessary to con-
tain all the parts. There are a total of 67 parts
on the board (not counting radiation shields)
with sizes ranging from 0603 resistors to the
15-pin Sub-D connector. The width turned
out to be 74mm.

Efficient use of volumetric space was also
desirable. The 15-pin Sub-D connector es-
tablished the space needed between the PCB
and the inside edge of the box it is mounted
in to about 1/4 inch. So all high-profile parts
should be on this side of the PCB to make
maximum use of this space. Only low profile
parts can go on the backside of the PCB.
The tallest part on the back of the PCB
stands out about 3.5mm with the exception
of the 40-pin connector that plugs into the
PCB containing the module function.

In some cases it may be desired by the mod-
ule developer to extend their PCB all the way
to the connector side of the box. If the box
height is sufficient this can be done by in-
verting the orientation of the 40-pin connec-
tor so that the right angle pins point down
rather than up. This connector is located at
the bottom edge of the PCB to accommo-
date this choice and centered left-to-right
along this edge.

The 15-pin Sub-D connector is located in

the geometric center of the PCB. It is
mounted to the PCB by stand-offs so that
when the connector is secured to the side of
the box the PCB is also securely held in place.

When a part requiring a radiation shield (IC’s
and FET transistors) is located on the PCB a
similar part should be located on the oppo-
site side of the PCB. This way, a radiation
shield attached to the top of one part can
also shield the bottom of another part thereby
reducing the total number of shields needed.

The FET module power switch should be
mounted on the side of the PCB facing the
box edge to maximize heat radiation coupling
to the side of the box rather than back into
the module contained in the box. Similarly,
the thermistor should be on the backside of
the PCB facing the application module.

The above requirements made component
placement challenging. But an even bigger
challenge was connecting everything prop-
erly. Some traces needed to be wide to allow
for significant currents. Other traces could
be very narrow. However, if you make them
too narrow the PCB manufacturer will expe-
rience manufacturing problems. The narrow-
est traces on the PCB are 0.006 inches wide
and the smallest spacing between traces is
also 0.006 inches. This is a four-layer board.

Most components are SMD and these units
will likely be assembled by hand.

Protocol Design
Our protocol design is based on a simple
transaction model that takes full advantage
of the unique characteristics of the CAN bus.
We use the 11-bit addressing mode on the
CAN bus instead of the longer 29-bit mode
to reduce packet size since the shorter ad-
dresses used in the 11-bit mode are more
than sufficient. Modules generally do not

speak unless spoken to (input packets from
a module in byte pipe mode are the excep-
tion), and the transaction model is as close
to stateless between transactions as pos-
sible.

CAN is a message oriented bus so each
packet contains a single message or stream
address. The data payload of each packet is
small - a maximum of eight bytes. All of the
low-level packet handling is implemented in
the CAN controller hardware, including er-
ror checking and retransmission.

The design of the CAN bus encodes packet
priority in message addresses. When two
CAN devices try to transmit at the same time
the higher priority packet succeeds and the
lower priority packet is deferred until it is the
highest priority packet. Our allocation of
address bits makes the module address less
significant than the stream type, which re-
flects our sense of priorities in the space-
craft environment. For example, an IHU can
be confident of always being able to write
output state vectors to all modules even if
some modules are responding oddly or not
at all.

In normal operation an IHU sends a single
CAN packet to each module that contains a
complete state vector to be written to the
module’s outputs. Each module then re-
sponds with a short burst of packets that
contain a state vector representing the com-
plete input state of the analog and digital
inputs to from the module. In this way each
transaction completely refreshes all of the
control lines and gathers a complete set of
telemetry points from a module.

In normal and multiplexed modes the output
state is contained in a single CAN packet
and the input state requires two or three CAN
packets for normal or multiplexed mode re-
spectively. In byte pipe mode the output
state, other than data for the byte pipe, is
contained in a single CAN packet and the
inputs require two reply packets. The data
to be piped is sent and received in single
CAN packets of eight data bytes each that
are separate and at a lower bus priority than
the command/telemetry packets.

For maximum compatibility with IPS software
expectations the protocol is designed around
the idea that each module might be asked to
engage in a command/telemetry transaction
as often as 50 times per second. At this rep-
etition rate it is not possible to interact with
a full set of modules all in multiplexed mode
on a 800 kbit/sec CAN bus. However, all rea-
sonable configurations of modules for all
spacecraft currently contemplating use of
this design are easily handled with band-
width to spare.

PCB with Downward Facing Plug



14 The AMSAT Journal

Firmware Design
From the onset of this project, we intended
to release the entire design as Open Source.
This has guided many aspects of the firm-
ware development from the choice of tools
we use to our internal documentation style.
All of our tools are
themselves Open
Source. Where one did
not exist, we created it
and are releasing it as
Open Source. The
tools we found are an
8051 family assembler
and a disassembler. We
created our own flash
utility for reprogram-
ming the
microcontroller as we
were not able to find an
Open Source tool for
this purpose. Our inter-
nal documentation is
quite descriptive, per-
haps more than typical
for a project of this
type. The reason, in
addition to this design
being open, will be described shortly.

Other philosophies guide our implementa-
tion. This device implements our spacecraft
wiring harness. As such the expectation is
that it just works. In fact, it must or we can
easily lose our spacecraft. To meet this ex-
pectation we adopted a philosophy seen
elsewhere in AMSAT designs - what is not
flown in orbit will not break in orbit. To a
firmware designer this means keep the
amount of code to a minimum. Make each
routine simple yet efficient. Use only the fea-
tures within the microcontroller we need to
accomplish our function.

Another constraint on our firmware design
is that we want this to work in the traditional
AMSAT spacecraft environment. The cur-
rently selected IHU is the master controller
of the CAN bus. Modules speak only when
spoken to. Our firmware design supports all
modules on the CAN bus being spoken to
50 times per second. The only exception to
this “speak when spoken to” policy is the
byte-pipe traffic. Byte pipe traffic is imple-
mented using lower priority messages so that
it will not interfere with the high priority ef-
fort of writing state vectors and reading te-
lemetry from the modules. It consumes bus
bandwidth not used by the higher priority
traffic.

Delving a little deeper into the firmware
implementation, the Atmel T89C51CC01 part
is rich in onboard devices. Our current firm-
ware makes use of the 256 Bytes of on-chip
RAM, 32K Bytes of on-chip Flash Memory,

two of the three 16-bit timers/counters, one
of the channels of the 5 channel 16-bit pro-
grammable counter array, the hardware
watchdog timer, the 10-bit resolution Ana-
log to Digital Converter with 8 multiplexed
inputs, all four I/O ports and the onboard

CAN controller. While this seems like quite
a list there remain more capabilities which
we don’t use such as the 2K Byte on-chip
EEPROM or a 1K Byte on-chip XRAM.
Again, we only use what we actually need.

The onboard CAN controller handles all
CAN bus interaction. The CAN controller
provides 15 independent message objects
each of which can be configured for either
transmit or receive. The firmware uses only
a couple of the 15. Each type of message is
allocated a receiver object. The CAN con-
troller handles the entire CAN protocol (re-
ceiving, acknowledging, retransmission,
etc.) and notifies the firmware when a mes-
sage has been completely received. The firm-
ware then copies the incoming message to
RAM, performs whatever actions are indi-
cated by the message and then tells the CAN
controller that it can start listening for that
type of message again.

On the transmit side firmware hands the en-
tire message off to the CAN controller and
tells it to start sending. The firmware is then
later told that the transmission has com-
pleted.

We clock the T89C51CC01 at 8MHz, well
below the 20 MHz maximum for the part. In-
structions are executed in a minimum of a
single machine cycle, which is 6 or 12 clock
periods long. We run the part in what’s called
X2 mode that selects the 6 clock period ma-
chine cycle. The resulting machine cycle time
is 750 nanoseconds. The instruction set con-

tains a mix of 1, 2 and 4 machine cycle in-
structions and, by rough calculation, our
code can be running anywhere from 650,000
to 1.3 million instructions per second.

For the standard and multiplex modes the
firmware copies the state vector bits from

each incoming message
to the output ports in-
cluding turning on/off
the power as requested
in the message. It then
reads all the digital in-
puts, digitizes the ana-
log inputs, places all
these telemetry values
into packets and ini-
tiates transmission of
the telemetry packets
over the CAN bus.

The act of digitizing the
analog values is the
only place that we use
any of the special re-
duced power modes of
the microcontroller.
When the firmware
samples the analog

channels it follows an Atmel recommenda-
tion to instruct the microcontroller to power
itself down during the conversion and re-
awaken once the conversion is complete.
This reduces digital noise during the con-
version and increases the precision of the
analog readings.

In the unlikely event that our firmware stops
working as expected a hardware watchdog
will reset the microcontroller. Since the firm-
ware is effectively stateless between trans-
actions the watchdog allows the firmware to
restart and continue operating with only the
loss of the transaction underway at the time
of the lockup. Each watchdog event resets
the CPU putting all of the output lines in a
default state. To speed overall system re-
covery the firmware keeps multiple copies
of the last output state vectors received in
RAM. Upon restart these copies are evalu-
ated and if there are at least two copies that
agree, these are immediately written to the
output lines. This means that it is likely that
the firmware can endure a watchdog restart
and still be able to restore the last known
output state if memory is not entirely cor-
rupted.

In byte-pipe mode the firmware processes
CAN messages for all functions other than
the pipe normally. In addition, it accepts out-
put CAN messages and transfers those
bytes to the associated module electronics
and simultaneously can accept bytes from
the module to be sent over the CAN bus. To

Circuit Board Group



November/December 2003 15

prevent lockups if something goes wrong in
the module electronics our firmware enforces
a minimum transfer rate for the module de-
velopers to meet. We implement a timer to
make sure each transfer completes in the al-
lotted time. If this timer runs out the current
transfer is abandoned. Any practical use of
the byte-pipe mode will involve an end-to-
end protocol between the IHU and module
involved so this defensive approach makes
good sense.

Even though we use hardware watchdogs
and timers to watch over the system we still
want to do our best to ensure that these
mechanisms only come into play under ex-
treme circumstances. To help ensure this all
of our firmware is written in handcrafted as-
sembly language because we want to know
exactly what the code is doing. Before flight
experienced software engineers in the
AMSAT community will be invited to review
our work. We fully expect this code review
effort to find ways we can improve the firm-
ware. One of the key benefits of the Open
Source approach is the notion that with
enough eyeballs looking at the code, all prob-
lems become visible. The high level of inter-
nal firmware documentation mentioned ear-
lier is intended to facilitate these inspections
by rapidly communicating the intent and
desired effect of each routine in the code.

Finally, we use our firmware in these widget
boards on the ground before the satellite is
even assembled. The module designers are
given the widget boards to be incorporated
into their module, CAN bus interfaces for
their PC’s and software that mimics the way
an IHU will interact with the modules on
board the satellite. This means that all of the
module implementers will be testing the be-
havior of these widget boards throughout
the development of their components of the
satellite. Any issues the module developers
point out which could affect flight will be
addressed in the firmware before it is flown.

Conclusions
The project is nearing completion at the
time of this writing. Prototype modules
have passed functional and radiation
tests. Flight firmware is nearing
completion and enough PC software exists
to allow functional testing of new modules
and rudimentary control of the modules
by satellite module builders. Still
remaining are improvements to the ground
software, implementation of the required
software in IPS to enable IHU interaction
with the modules and completion of the
documentation package for satellite
builders.

Several other AMSAT projects involving
spacecraft of similar complexity are
expected to adopt this design for their
onboard command and telemetry systems,
and at least one small satellite company
has expressed interest.

Additional information about this project
will be published on the web at: http://
www.amsat.org/amsat/projects/can-do/

IT’S A HAWK! IT’S A MAN!
IT’S MIKE, N1JEZ!

Last Sunday Dave, (N9PVF), his charming
wife and I went to the top of Mt. Wachusetts,
MA to watch the Hawk population migrat-
ing to the south as they do every year. We
had expected to see many of them following
the air currents. The hilltop was filled with
many other bird watchers with their tele-
scopes and binoculars of all different makes
and models. Many of them had come from
many miles away just to see this event.

I noticed one with a microwave dish jump-
ing back and forth from his antenna and his
car. I stood along side him for a moment and
heard him say FN41 you are acknowledged.
Somehow or other I knew this was not a bird
watcher. Then I heard him say this is N1JEZ
FN42BL. I froze in my tracks and said to him
“Hello Mike” I am N1ORC, Arthur, and he
replied I knew your voice the moment I heard
you speak. Previously we had conversations
on the Mt. Washington, NH repeater
(146.655) and on UO-14. Mike had driven
four hours from his home in Burlington, VT
to reach this location to participate in the
Microwave contesting that took place on
Sept. 21, 2003. All I can add is that you never
know whom you will meet in any part of this
small world.

Arthur, N1ORC

P.S. I guess we were too early to see any
Hawks but we did see several Sea Gulls.

(Ed. Note - See Mike’s article on page 25.)

Bird Watchers

Support AMSAT-NA!



16 The AMSAT Journal

Ca
n-

Do
!

Pr
oc

es
so

r S
ch

em
at

ic



November/December 2003 17

Ca
n-

Do
!

Po
w

er
 S

up
pl

y 
an

d 
In

te
rf

ac
e 

Sc
he

m
at

ic


